ATC 100 C Series
Porcelain High RF Power
Multilayer Capacitors

• Case C Size (.250" x .250")
• Capacitance Range 1 pF to 2700 pF
• High Q
• Ultra-Stable Performance
• Low ESR/ESL
• High RF Current/Voltage
• Available with
Encapsulation Option*
• High RF Power
• Extended WVDC up to 3600 VDC
• High Reliability

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 C Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density Porcelain construction provides a rugged, hermetic package.

ATC offers an encapsulation option for applications requiring extended protection against arc-over and corona.

Typical functional applications: Bypass, Coupling, Tuning, Impedance Matching and DC Blocking.

Typical circuit applications: VHF/UHF RF Power Amplifiers, Antenna Tuning, Plasma Chambers and Medical (MRI coils).

*For leaded styles only.

ENVIRONMENTAL TESTS
ATC 100 C Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK:
MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE:

LOW VOLTAGE HUMIDITY:
MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.

LIFE TEST:
200% of WVDC for capacitors rated at 500 volts DC or less.
120% of WVDC for capacitors rated at 1250 volts DC or less.
100% of WVDC for capacitors rated above 1250 volts DC.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

QUALITY FACTOR (Q):
Greater than 10,000 (1.0 pF to 1000 pF) @ 1 MHz.
Greater than 10,000 (1100 pF to 2700 pF) @ 1 KHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):
+90 ±30 PPM/°C (-55°C to +125°C)

INSULATION RESISTANCE (IR):
1 pF to 2700 pF:
10^6 Megohms min. @ +25°C at rated WVDC.
10^4 Megohms min. @ +125°C at rated WVDC.
Max. test voltage is 500 VDC.

WORKING VOLTAGE (WVDC): See Capacitance Values Table, p 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):
250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds.
150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds.
120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None
(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.

OPERATING TEMPERATURE RANGE:
From -55°C to +125°C (No derating of working voltage).

TERMINATION STYLES:
Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 10 lbs. min., 20 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.
ATC 100 C Capacitance Values

<table>
<thead>
<tr>
<th>CAP. CODE</th>
<th>CAP. (pF)</th>
<th>TOL.</th>
<th>RATED WVDC STD.</th>
<th>EXT.</th>
<th>CAP. CODE</th>
<th>CAP. (pF)</th>
<th>TOL.</th>
<th>RATED WVDC STD.</th>
<th>EXT.</th>
<th>CAP. CODE</th>
<th>CAP. (pF)</th>
<th>TOL.</th>
<th>RATED WVDC STD.</th>
<th>EXT.</th>
<th>CAP. CODE</th>
<th>CAP. (pF)</th>
<th>TOL.</th>
<th>RATED WVDC STD.</th>
<th>EXT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1R0</td>
<td>1.0</td>
<td></td>
<td>B, C, D</td>
<td>2500</td>
<td>5R1</td>
<td>5.1</td>
<td></td>
<td>B, C, D</td>
<td>3000</td>
<td>390</td>
<td>39</td>
<td></td>
<td>2500</td>
<td>3000</td>
<td>301</td>
<td>30</td>
<td></td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>1R1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>5R6</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td>430</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>331</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td>6R2</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td>470</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td>6R8</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td>510</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>391</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>7R5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td>560</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>431</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>8R2</td>
<td>8.2</td>
<td></td>
<td></td>
<td></td>
<td>620</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>471</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td>9R1</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td>680</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td>511</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R7</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>750</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>561</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R8</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>820</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>621</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1R9</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>910</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>681</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2R0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>751</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2R1</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>821</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2R2</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>121</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>911</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2R4</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>131</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2R7</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>151</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3R0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>161</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td>122</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3R3</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>181</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td>152</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3R6</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>201</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td>182</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3R9</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>221</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td>222</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4R3</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td>330</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>241</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td>242</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4R7</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td>360</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td>271</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td>272</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VRMS = 0.707 x WVDC

- SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

Capacitance Tolerance

<table>
<thead>
<tr>
<th>Code</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>J</th>
<th>K</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tol.</td>
<td>±0.1 pF</td>
<td>±0.25 pF</td>
<td>±0.5 pF</td>
<td>±1%</td>
<td>±2%</td>
<td>±5%</td>
<td>±10%</td>
<td>±20%</td>
</tr>
</tbody>
</table>

ATC Part Number Code

- **Series**: ATC100 C
- **Case Size**: 10
- **Capacitance Code**: 0
- **Rater** (±%): W
- **Voltage**: 2500
- **Termination Code**: C
- **Packaging**:
 - C - ATC Matrix Tray (Standard)
 - T - Tape and Reel, 500 pc. qty.
 - I - Special Packaging. Consult Factory
- **Laser Marking**: W
- **WVDC**

The above part number refers to a 100 C Series (case size C) 10 pF capacitor, J tolerance (±5%), 2500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and ATC Waffle-packaging.

ATC accepts orders for our parts using designations with or without the “ATC” prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the “ATC” prefix are interchangeable to parts referenced without the “ATC” prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

Contact factory for additional performance data.

AMERICAN TECHNICAL CERAMICS
- **ATC North America**
 - sales@atceramics.com
- **ATC Europe**
 - sales@atceramics-europe.com
- **ATC Asia**
 - sales@atceramics-asia.com

www.atceramics.com
ATC 100 C Capacitors: Mechanical Configurations

<table>
<thead>
<tr>
<th>ATC SERIES & CASE SIZE</th>
<th>ATC TERM. CODE</th>
<th>CASE SIZE & TYPE</th>
<th>OUTLINES</th>
<th>BODY DIMENSIONS INCHES (MM)</th>
<th>LEAD AND TERMINATION DIMENSIONS AND MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>W/T IS A TERMINATION SURFACE</td>
<td>LENGTH (L)</td>
<td>WIDTH (W)</td>
</tr>
<tr>
<td>100C W</td>
<td>C</td>
<td>Solder Plate</td>
<td></td>
<td>.230 +.020 -.010 (5.84 +.051 -.25)</td>
<td>Tin/Lead, Solder Plated over Nickel Barrier Termination</td>
</tr>
<tr>
<td>100C P</td>
<td>C</td>
<td>Pellet</td>
<td></td>
<td>.230 +.025 -.010 (5.84 +.064 -.25)</td>
<td>Heavy Tin/Lead Coated, over Nickel Barrier Termination</td>
</tr>
<tr>
<td>100C T</td>
<td>C</td>
<td>Solderable Nickel Barrier</td>
<td></td>
<td>.230 +.020 -.010 (5.84 +.051 -.25)</td>
<td>RoHs Compliant Tin Plated over Nickel Barrier Termination</td>
</tr>
<tr>
<td>100C CA</td>
<td>C</td>
<td>Gold Chip</td>
<td></td>
<td>.230 +.020 -.010 (5.84 +.051 -.25)</td>
<td>RoHs Compliant Gold Plated over Nickel Barrier Termination</td>
</tr>
<tr>
<td>100C MS</td>
<td>C</td>
<td>Microstrip</td>
<td></td>
<td>.250 ±.015 (6.35 ±.38)</td>
<td>High Purity Silver Leads</td>
</tr>
<tr>
<td>100C AR</td>
<td>C</td>
<td>Axial Ribbon</td>
<td></td>
<td>.245 ±.025 (6.22 ±.64)</td>
<td>Silver-plated Copper Leads</td>
</tr>
<tr>
<td>100C AW</td>
<td>C</td>
<td>Axial Wire</td>
<td></td>
<td></td>
<td>Silver Leads</td>
</tr>
<tr>
<td>100C VA</td>
<td>C</td>
<td>Vertical Axial Ribbon</td>
<td></td>
<td></td>
<td>Silver-plated Copper Leads</td>
</tr>
<tr>
<td>100C RW</td>
<td>C</td>
<td>Radial Wire</td>
<td></td>
<td></td>
<td>Silver-plated Copper Leads</td>
</tr>
</tbody>
</table>

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

WL = .110 (2.79) for capacitance values ≤ 680 pF; **WL** = .130 (3.30) for capacitance values > 680 pF.

ATC North America | sales@atceramics.com
ATC Europe | saleseur@atceramics.com
ATC Asia | sales@atceramics-asia.com

www.atceramics.com
ATC 100 C Capacitors: Non-Magnetic Mechanical Configurations

<table>
<thead>
<tr>
<th>ATC SERIES & CASE SIZE</th>
<th>ATC TERM. CODE</th>
<th>CASE SIZE & TYPE</th>
<th>OUTLINES W/T IS A TERMINATION SURFACE</th>
<th>BODY DIMENSIONS (INCHES (mm))</th>
<th>LEAD AND TERMINATION DIMENSIONS AND MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LENGTH (L) WIDTH (W) THICKNESS (T) OVERLAP (Y)</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>100C WN</td>
<td>100C</td>
<td>C Non-Mag Solder Plate</td>
<td></td>
<td>.230 +.025 -.010 (5.84 +.64 -.25)</td>
<td>Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination</td>
</tr>
<tr>
<td>100C PN</td>
<td>100C</td>
<td>C Non-Mag Pellet</td>
<td></td>
<td>.230 +.035 -.010 (5.84 +.89 -.25)</td>
<td>.145 (3.68) max. for capacitance values ≤ 680 pF; .165 (4.19) max. for capacitance values > 680 pF.</td>
</tr>
<tr>
<td>100C TN</td>
<td>100C</td>
<td>C Non-Mag Solderable Barrier</td>
<td></td>
<td>.230 +.025 -.010 (5.84 +.64 -.25)</td>
<td>.250 ±.015 (6.35 ±.038)</td>
</tr>
<tr>
<td>100C MN</td>
<td>100C</td>
<td>C Non-Mag Microstrip</td>
<td></td>
<td>.245 ±.025 (6.22 ±.064)</td>
<td>Tin/Lead Coated, over Non-Magnetic Barrier Termination</td>
</tr>
</tbody>
</table>

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

Suggested Mounting Pad Dimensions

Case C Vertical Mount

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 680 pF</td>
<td>Normal</td>
<td>.150</td>
<td>.050</td>
<td>.200</td>
<td>.300</td>
</tr>
<tr>
<td></td>
<td>High Density</td>
<td>.130</td>
<td>.030</td>
<td>.200</td>
<td>.260</td>
</tr>
<tr>
<td>> 680 pF</td>
<td>Normal</td>
<td>.185</td>
<td>.050</td>
<td>.200</td>
<td>.300</td>
</tr>
<tr>
<td></td>
<td>High Density</td>
<td>.165</td>
<td>.030</td>
<td>.200</td>
<td>.260</td>
</tr>
</tbody>
</table>

Dimensions are in inches.

Contact Information

ATC North America
sales@atceramics.com

ATC Europe
saleseur@atceramics.com

ATC Asia
sales@atceramics-asia.com

www.atceramics.com
ATC 100 C Performance Data

ESR VS. CAPACITANCE
ATC SERIES 100, CASE C

Q VS. CAPACITANCE
ATC SERIES 100, CASE C

SERIES RESONANCE VS. CAPACITANCE
ATC SERIES 100, CASE C

CURRENT RATING VS. CAPACITANCE
ATC SERIES 100, CASE C

The current rating is based on a 65°C mounting surface and a device thermal resistance of 15°C/W. A power dissipation of 4W will result in a case temperature of 125°C.

CURRENT RATING VS. CAPACITANCE
ATC SERIES 100, CASE C

The current rating is based on a 60°C mounting surface and a device thermal resistance of 15°C/W. A power dissipation of 4W will result in a case temperature of 125°C.

CAPACITANCE CHANGE VS. TEMPERATURE
ATC SERIES 100, CASE C

The current rating is based on a 65°C mounting surface and a device thermal resistance of 15°C/W. A power dissipation of 4W will result in a case temperature of 125°C.
Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC’s website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.